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The behaviour of internal gravity wave packets approaching a critical level is 
investigated through numerical simulation. Initial-value problems are formulated for 
both small- and large-amplitude wave packets. Wave propagation and the early stages 
of interaction with the mean shear are two-dimensional and result in the trapping of 
wave energy near a critical level. The subsequent dynamics of wave instability, 
however, are fundamentally different for two- and three-dimensional calculations. 
Three-dimensionality develops by transverse convective instability of the two- 
dimensional wave. The initially two-dimensional flow eventually collapses into quasi- 
horizontal vortical structures. A detailed energy balance is presented. Of the initial 
wave energy, roughly one third reflects, one third results in mean flow acceleration and 
the remainder cascades to small scales where it is dissipated. The detailed budget 
depends on the wave amplitude, the amount of wave reflection being particularly 
sensitive. 

1. Introduction 
The behaviour of internal gravity waves near critical levels is a problem of 

considerable interest to a diverse audience. Waves at critical levels exhibit the 
interaction of shear and buoyancy forces, fluid instability and stratified turbulence, all 
topics of interest to many fluid dynamicists and applied mathematicians. The 
interaction occurs in nature ; internal waves approach critical levels as they propagate 
through larger-scale currents in the ocean and winds in the atmosphere. Though their 
detailed dynamics are not yet well understood, the behaviour of waves at critical levels 
is thought to be of fundamental importance. Critical-level interactions may be largely 
responsible for the transfer of internal wave energy to dissipation scales in the ocean 
interior. Oceanographic interest in particular has been stimulated by Henyey, Wright 
& Flatte (1984). In this work, it was shown that nearly all small-scale waves encounter 
a critical level within a few inertial periods when propagating through a realistic 
background field of internal waves. 

The modification of internal waves as they propagate through an ambient shear flow 
is well described by asymptotic methods (Whitham 1974; Bretherton 1966) when the 
lengthscale of variability in the ambient shear is large compared to the wavelength and 
the WKB approximation is appropriate. These methods, however, break down at 
critical levels, where the phase speed of the wave matches the ambient flow speed, 
predicting infinite energy densities. Carrying the solutions to higher order to resolve the 
mathematical singularity necessitates the inclusion of additional physics. 
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Two general approaches have been taken. In the first, closure is obtained by the 
inclusion of molecular effects, neglecting nonlinearities. This problem has been treated 
numerically by Hazel (1967) and Fritts & Geller (1976). While this limit is certainly 
applicable in some situations, the nearly inviscid, nonlinear limit is perhaps of primary 
importance for many geophysical flows. In this regime, wave instability and small-scale 
turbulence can result from the trapping of waves at critical levels. 

Though some laboratory investigations of critical level interactions have been 
conducted (Thorpe 1981; Koop 1981; Koop & McGee 1986), previous numerical 
studies have been limited to two spatial dimensions (Breeding 1971; Fritts 1982; 
Winters & D’Asaro 1989; Walterscheid & Schubert 1990). Constraining a problem to 
two dimensions, however, can produce some unexpected consequences, one example 
being the counter-intuitive form of wave instability exhibited in the simulations of 
Winters & D’Asaro (1 989). As expected, large-amplitude waves produced overturned 
isopycnals as well as localized regions of high shear near a critical level. Rather than 
breaking down rapidly due to convective instability, however, the overturns were 
observed to persist for greater than ten buoyancy periods as the wave shear continued 
to intensify. Eventually, a wave instability did occur, the energetics of which were 
shown to be driven primarily by the wave shear rather than the available potential 
energy of the overturns. 

In an attempt to interpret this result, Winters & Riley (1992) performed a linear 
stability analysis of a family of simplified velocity and density profiles similar to those 
produced by waves near critical levels. The study focused on the interaction between 
the shear and convective instability mechanisms. For spatially oscillatory profiles with 
both strong shear and locally unstable stratification, the type of instability predicted 
was found to depend strongly on the geometrical orientation of a given disturbance. 
For disturbances with variability in the streamwise direction, a shear-dominated 
instability is preferred even in the presence of overturns in the stratification, a result 
consistent with the two-dimensional simulations of Winters & D’Asaro (1989). 
Disturbances oriented in the spanwise direction, however, are unaffected by the shear 
and undergo a convective instability on the buoyancy timescale. The results of the 
stability analysis suggest that the wave instability near the critical level may have been 
quite different had the simulations of Winters & D’Asaro (1989) been performed in 
three dimensions rather than in two. Higher-resolution simulations of two-dimensional 
waves at critical levels have been carried out by Lin er al. (1993) with similar results. 
Lin et al. analysed the stability of their computed solutions directly, i.e. without 
simplification, and confirmed the importance of three-dimensional dynamics in the 
wave breakdown. 

In this work, we use a three-dimensional numerical model to study the behaviour of 
internal waves at critical levels. We have two primary motivations in investigating the 
three-dimensional aspects of this problem. The first is to check the prediction of linear 
stability theory, namely that instability should develop through convective rolls 
oriented spanwise to the ambient shear. The second is to quantify the distribution of 
energy between various components of the flow field, i.e. the incident wave packet, the 
mean flow, reflected waves, mixing and dissipation. As was pointed out by Breeding 
(1971), the division of energy between these components may be different in three 
dimensions than in two. 

In formulating a mathematical model to be solved numerically, we assume that, for 

formation of a localized region of small-scale turbulent flow. The initial wave packet 
will be prescribed so that the wave envelope is slowly varying with respect to its vertical 

moderately large-amplitude incident waves, an instability will occur, leading to the I 
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wavelength. From linear asymptotic theory, we know that the vertical wavenumber of 
the waves increases dramatically through interaction with the ambient shear. Further, 
we expect that wave instability will produce turbulent flow at even smaller scales. Thus, 
the process is expected to be fundamentally scale separated, characterized by greatly 
disparate lengthscales. 

Ideally, direct numerical simulations would be used and the numerical model would 
resolve the entire range of scales, from the vertical scales of the ambient shear and the 
packet envelope to the turbulent dissipation scales. In the ocean thermocline, the 
required computational bandwidth spans scales from tens or hundreds of metres to 
centimetres or millimetres. At present, this is not a realistic goal if three-dimensional 
simulations are required. As one objective is to investigate the nearly inviscid, 
nonlinear instability of waves near critical levels, we choose to resolve the largest scales 
of the problem and introduce a subgrid-scale model that rapidly.damps energy at the 
smallest computational scales. We require that the sub-grid-scale model have minimal 
direct effect on motions at the scale of the wave instability. As the scale of wave 
breaking is not known a priori, some trial and error was necessary to define an 
adequate damping scheme. The results thus obtained belong to a class of calculations 
known as large-eddy simulations. 

A series of calculations is presented, intended to highlight and elucidate individual 
processes. To quantify the nonlinear effects, i.e. the extent to which the solution does 
not simply scale with incident wave energy, calculations are performed for both small- 
and large-amplitude incident waves. The initial amplitudes are + and $ of the amplitude 
required for overturning respectively. Three-dimensional aspects of the problem are 
examined through direct comparison of two- and three-dimensional simulations. 

The numerical model and the non-dimensionalization scheme are presented in $2. 
Initial-value problems for wave packets approaching critical levels are defined in $ 3 .  
The contrasting dynamics of unstable waves in two and three dimensions are 
considered in $4. An important dynamical mode, the potential vorticity carrying 
vortical mode, can emerge when the problem is treated in three rather than in two 
dimensions. The dynamics of potential vorticity are also discussed in $4. A detailed 
energy analysis, quantifying the distribution of energy between the various flow 
components, is presented in $ 5 .  A discussion and summary of results is provided in $6. 

2. Numerical model 

listed below. 
The dimensionless equations of motion for a density-stratified Boussinesq fluid are 

(1) 
au 
at 
-+u.Vu+Rip'Z = - V p + g [ u ] ,  

v - u  = 0. ( 3 )  
Here u = [u, u, w] are the velocity components in the 2-,9- and f- (vertical) directions 
respectively. The primes in (1) and (2) indicate perturbations from the background 
potential density profile p(z). The magnitudes of the perturbations are arbitrary; no 
small-amplitude approximations are made. The linear operator 9 determines the 
dissipative and diffusive behaviour of the flow at small scales; 9 [ f ]  = Re-lV2f. 

The velocity and length scales used in the non-dimensionalization are U = 1 cm s-l 
and L = 7.5 m respectively. These scales correspond to the horizontal phase speed of 
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the incident wave packet and the approximate vertical scale of the waves just prior 
to instability near the critical level. Density perturbations p’ are scaled by L JdpldzJ. 
The density gradient is chosen to give a buoyancy frequency N = 3.8 c.p.h. where 
N 2  = (-g/p,) dp/dz, g is the gravitational acceleration and pa is the characteristic 
density. This value is typical of the upper ocean thermocline. The time t is scaled by 
L / U  and pressure p by pa U 2 .  

Three dimensionless parameters appear in the equations of motion. The bulk 
Richardson number Ri = [NL/UI2 relates the wave scales to the ambient stratification. 
All calculations reported were run with Ri = 25. The remaining two dimensionless 
parameters, the Reynolds number Re = UL/v ,  and the Prandtl number Pr = V / K  

control the rates of molecular dissipation and diffusion. The equations are solved over 
the cube (x, y ,  z )  E [0,10). Periodic boundary conditions are imposed in each direction 
and standard pseudospectral numerical techniques are employed. 

Given existing computational constraints, a three-dimensional numerical model 
cannot resolve both the outer scales of the problem and the dissipation scales. 
Truncating the bandwidth of a computational model, however, results in numerical 
stability problems when energy is transferred to small scales. One approach to 
maintaining stability is to perform low-Reynolds-number simulations. For the problem 
treated here, however, Reynolds numbers small enough to preserve numerical stability 
result in excessive damping of the wave packet as it approaches the critical level. Wave 
instability is then viscously prohibited. 

To overcome this difficulty, a subgrid-scale model is introduced. For purely 
numerical reasons, the operator 9 is replaced with higher-order derivatives ; 
92 = (I/Re’)V’6. The prime associated with the Reynolds number indicates that its 
meaning (and that of Pr) should be reinterpreted, in order to maintain dimensional 
consistency. The basic operator 
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is anisotropic, allowing stability to be preserved under non-uniform discretization. The 
constants a: and ,8 define the degree of anisotropy and have been set to n,/n, and n,/ny 
respectively where n, = n, = 32 and n, = 200 are the number of grid points in the 
f-, 9- and $directions. 

High-order dissipation operators are more frequently used for large-scale ocean 
models but have also been used at small scales (Farge 1987). The advantage of such a 
scheme is that, by tuning the coefficients and the derivative orders, dissipation and 
diffusion can be constrained to a very narrow band of computational wavenumber 
space, leaving the remainder to be treated essentially inviscidly and non-diffusively. 
For sixth-order derivatives and the grid resolution stated above, the values 
Re‘ = 2.66 x lo9, Pr = 1 were found to minimally damp the energy cascade to small 
scales. The damping scheme is easily implemented using spectral methods. Quali- 
tatively, this approach is supported by the work of Domaradzki et al. (1987) who 
compared low- and high-resolution simulations of isotropic turbulence. The form of 
sub-grid-scale parameterization required for the calculations to agree at overlapping 
scales was then determined. It was found that low-resolution simulations should 
rapidly damp energy only in a narrow band of scales near the resolution limit. 

For the three-dimensional, large-amplitude simulation discussed in this paper, wave 
instability occurs prior to appreciable dissipation or diffusive mixing. As will be shown 
in 9 5,  approximately 95 % of the kinetic energy dissipation occurs after the mode of 
instability has become well established. Thus, the subgrid-scale dissipation model has 
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minimal direct effect on the wave instability. The primary role of the subgrid-scale 
model is to rapidly damp the subsequent cascade of energy to small scales. Assuming 
that motions at subgrid scales do not significantly influence the flow at resolved scales, 
the overall rates of dissipation and mixing are determined by the rates of energy 
transfer downscale, i.e. by processes occurring at well resolved scales in the nearly 
inviscid limit. 

3. Initial conditions 
For simple periodic boundary conditions, in the absence of external forcing, the 

initial conditions determine the mathematical problem for the model described in $2. 
Although our interest is primarily in the behaviour of large-amplitude waves in three 
dimensions, several initial-value problems have been solved numerically, with each 
calculation isolating a particular aspect of the physics. Through a series of calculations, 
we will contrast the behaviour of two- and three-dimensional waves as well as linear 
and nonlinear dynamics. The initial conditions for these calculations are given here. All 
variables discussed in this and subsequent sections are dimensionless, with the scaling 
of variables given in $2. 

Typically, the initial conditions consist of a one-dimensional ambient shear flow, 
U(z) 2, and a two-dimensional internal wave packet comprising density perturbations 
and velocity components in the 3- and &directions. Note that the prescribed wave 
packets have no variability in the 9-direction, spanwise to the ambient shear. For these 
initial conditions, the flow remains strictly two-dimensional at all subsequent times. If, 
however, an additional initial component is prescribed that has variability in the 
spanwise direction, the flow is free to evolve in three dimensions. In particular, we wish 
to allow this degree of freedom to nonlinear waves as they are about to break down 
near a critical level. Thus, for most of the calculations, we also prescribe a weak, three- 
dimensional ‘noise’ field. The energy spectrum of the noise is white. The phases 
between velocity and density perturbations were chosen randomly, with incom- 
pressibility imposed explicitly for each Fourier mode. Although each of the 
calculations presented was carried out in three dimensions, a distinction is made 
between a two-dimensional calculation, which is initialized with no noise and hence 
remains two-dimensional, and a three-dimensional calculation, for which a noise field 
is prescribed. 

The analytic forms (4)-(7) for the initial wave packets are obtained by taking an 
unbounded, free internal wave solution and multiplying each component by an 
envelope function that varies only slowly in the vertical direction. An additional 
velocity component must be added to ensure incompressibility, but this component is 
small in amplitude, being proportional to the ratio of lengthscales of the wave and its 
envelope. The result is 

p’(x, 0)  = A(z)  cos ( k x  + mz), 
w(x,  0)  = wA(z)  sin ( k x  + mz), 

(4) 
( 5 )  

mu w 
u(x,O) = --A(z)sin(kx+mz)+-A‘(z)cos(kx+mz), k k 

u(x,0) = 0. (7)  
The frequency w satisfies the linear dispersion relation in the absence of a mean flow : 
w2 = Rik2/ (k2  + m2). The wave envelope is prescribed by setting 

(8) A(z)  = A ,  e-(0.255Z-101)2 
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FIGURE 1 .  The location and relative scales associated with the wave packets and the ambient shear 
flow. With respect to the initial vertical wavelength A, the wave envelope varies slowly and the 
distance to the critical level zc is moderately large. 

The polarization of the wave components is chosen so that the packets propagate 
downward. The wavenumbers k and rn are set equal to (2x)/10 and 8 x (2x)/10, 
corresponding to horizontal mode 1 and vertical mode 8 respectively. The packets are 
initially located in a region of the domain where the ambient shear is negligible, and 
subsequently propagate into the interaction region where the shear becomes important. 
The total distance the peak of the packet envelope must travel before encountering the 
critical level is large compared to the initial vertical wavelength. 

In distinguishing between calculations, we will use the modifiers linear and nonlinear. 
It should be understood that the distinction refers only to the initial amplitudes of the 
wave packets; the equations solved numerically are fully nonlinear in all cases. The 
nonlinear calculations have wave amplitudes three times, and energies nine times, those 
of the linear calculations. The value of A ,  is 0.75 and 0.25 for the nonlinear and linear 
calculations respectively. 

Given the characteristic parameters of the incident wave packet, a shear flow can be 
prescribed so that the waves will encounter a critical level at a known location. A 
depth-dependent shear flow is specified with a peak amplitude slightly greater than 
twice the critical speed for the given wave packet. 

~ ( z )  = c P ~ 2 . 1  e--(2.26[~-51)~ - 11. (9) 

The shear flow itself is stable to Kelvin-Helmholtz-type instabilities (Drazin & Reid 
1981), and has a gradient Richardson number Rig = Ri/(dU/dz)' = f at the critical 
level. The reference frame of the calculation is set by adding a spatially uniform 
component - CP = - w/k to (9). In this frame, the Eulerian phase speed and hence the 
critical flow speed are both zero. Figure 1 shows the relative scales associated with the 
wave packets and the ambient shear flow. 
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4. Dynamics of wave instability 
4.1. Overview 

Here and in subsequent sections we will confine our attention to the flow field within 
the subdomain 5 < z < 7.5, where the wave packets interact with the ambient shear 
flow. The flow outside this region consists primarily of a freely propagating incident 
wave packet, though reflected waves are also present during the later stages of the 
calculations. For the purpose of this analysis, the wave propagation in these regions is 
not of interest. 

Figure 2 shows contours of the density field in the depth-time plane for the three- 
dimensional linear, and the two- and three-dimensional nonlinear calculations. This 
view of the flow corresponds to that obtained by a vertical profiler moving uniformly 
in the direction opposing the intrinsic phase speed of the wave. This reference frame 
is convenient here as several wavelengths can be displayed within a reasonably short 
time window, allowing changes in phase direction to be perceived easily. For 
illustration, the region where the mean horizontal flow is greater than or equal to the 
critical speed is shaded. 

Prior to about t = 10 (time is given in buoyancy periods), most of the isopycnal 
displacements occur above the interaction region. Lines of constant phase can easily be 
distinguished and remain approximately parallel to one another as the waves 
propagate freely. Note that the critical level z ,  moves upward in time, particularly in 
the nonlinear cases, as indicated by the widening shaded region. Just above the shaded 
region, the ambient shear is non-zero but the flow speed is less than the critical value. 
In this region, the orientation of the phase lines rotates clockwise, indicating a slowing 
of the downward wave propagation. Near the critical level, i.e. near the top edge of the 
shading, the displacements become large, beginning about t = 15, as more of the wave 
energy becomes trapped. Well below the initial location of the critical level, the 
isopycnal disturbances remain small in all cases, indicating very little transmission of 
wave energy. 

In the linear calculation (a),  the displacements never become so large that 
gravitationally unstable density gradients occur. After about t = 30, the displacements 
near the critical level gradually decrease with time. Well above the critical level, a 
standing wave pattern is apparent, indicating reflection of waves away from the vicinity 
of the critical level. Significant wave reflection was also observed by Breeding (1971) for 
waves at critical levels when the gradient Richardson number was less that about 2. 

While the overall evolution of the flow in the nonlinear calculations (b) and (c )  is 
similar, the results are markedly different near the critical level where the wave 
amplitudes are largest. Overturns in the isopycnals appear near the critical level 
beginning at about t = 20 for both the two- and three-dimensional cases. The location 
of the largest overturns moves upward in time, following the critical levels as it moves 
toward the wave source. While these features persist until about t = 40 in the two- 
dimensional case, they are no longer present after about t = 22 in the three- 
dimensional calculation. After the disappearance of these overturns, the flow becomes 
nearly quiescent at the original level of these features. The isopycnal spacing in this 
region, however, has increased, suggesting diapycnal mixing. This is most evident in the 
three-dimensional case but can also be seen in the later stages of the two-dimensional 
case. 

4.2. Streamwise view 
We now look at the flow near the critical level in more detail. Recall that the initial 
wave packets were uniform in the direction spanwise to the ambient shear flow and that 
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Time in buoyancy periods 

FIGURE 2. Density contours in the depth-time plane for ( a )  the three-dimensional linear, (h) the two- 
dimensional nonlinear, and (c) the three-dimensional nonlinear calculations. Vertical profiles of 
density are sampled at y = 2.5 and at  .Y = x o - y t  with y = $. 
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the reference frame of the calculations is such that the incident packets have zero 
Eulerian phase speed. The overturning waves near the critical level are thus stationary. 
We first examine their development i n  time in the streamwise (.\a, :)-plane. The results 
are strictly independent of spanwise position 1’ for the two-dimensional calculation, 
very nearly independent of JS for the three-dimensional linear case, and exhibit regular 
spanwise variability for the three-dimensional nonlinear calculation. 

For the linear calculation, figure 3 shows isopycnals in the (s, z)-plane, for j. = 0, at 
several points in time. The largest displacements occur in the shaded region near the 
initial location of the critical level zc = 5.4. The wave becomes moderately steep, 
especially a t  t = 30, but then relaxes slowly without developing any gravitationally 
unstable overturns. The timescale of the relaxation is relatively large, on the order of 
20 buoyancy periods. There is no indication of any wave instability or  sudden change 
in the character of the flow. The primary dynamical balance is between an energy flux 
toward the critical level, the transfer of energy to the mean flow and laminar 
dissipation. (A more detailed discussion of the energy balance is given in $5 . )  

The isopycnals for the two- and three-dimensional large-amplitude packets a t  the 
same spatial location are shown in figures 4 and 5 respectively. Again, the largest 
displacements occur in the shaded regions. For these two cases, however. the wave is 
energetic enough to overturn the isopycnals, creating regions where heavy fluid has 
been lifted above lighter fluid. Comparing figures 4 and 5 i t  is evident that the two flows 
are nearly identical at f = 20, with a single overturning structure appearing as the 
dominant feature. This suggests that the wave-like aspects of the problem, i.e. the wave 
propagation, its trapping and intensification to the point of overturning, are 
fundamentally two-dimensional. These processes exhibit no tendency to create 
spanwise variability in the flow. The fate of the overturning feature, however, is clearly 
dependent on the number of spatial dimensions it is free to evolve in. In the two- 
dimensional case, the overturning persists for more than 20 buoyancy periods, with no 
evidence of convective instability, as wave energy continues to impinge on the critical 
level. This behaviour is similar to that seen in Winters & D’Asaro (1989). In contrast, 
for the three-dimensional case, only a small amount of overturning is left by t = 22. No 
overturns are present by t = 24. The dynamics resulting in the gravitational 
stabilization of overturned waves are clearly different in three dimensions than in two. 
At issue is the extent to which the differing dynamics affect the ultimate distribution of 
incident wave energy between reflection, transmission, acceleration of the mean flow, 
diffusive mixing and dissipation. This is addressed, within the limitations of the large- 
eddy simulation approach, in $ 5 .  

4.3. Spanwise view 
Linear stability theory predicts different dynamics for overturned waves in two and 
three dimensions. Winters & Riley (1992) showed that the presence of strong shear can 
inhibit the development of convective restratification of overturns in two dimensions. 
The directional dependence of the instability mechanism stems from the decreasing 
influence of shear on disturbances with horizontal wavenumber vectors rotated away 
from the streamwise direction. In the limit of orthogonally oriented disturbances, the 
influence of the shear vanishes, leaving only the overturned stratification to drive an 
instability. Thus, convective instability is predicted for overturned waves, with the 
fastest growth rates associated with convective cells oriented in the spanwise plane. By 
spanwise orientation, we mean convective cells with vorticity vectors pointing in the 
positive or  negative streamwise direction. 

To  assess the development of the instability in the spanwise dimension, the simulated 
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flow fields from the three-dimensional cases were spectrally filtered, retaining the 
component of the flow with mode numbers 101/2n > 2, where I is the wavenumber in 
the transverse ?-direction. The resulting velocity field is denoted uf. As the initial 
wave packet and the ambient shear flow were prescribed independent of y ,  only the 
small-amplitude noise field contributes to uj initially. The magnitude of uf remains 
comparable to its initial value in the linear calculation, implying that the flow remains 
almost entirely two-dimensional. Only the result of the three-dimensional nonlinear 
calculation is of interest here. 

Figure 6 shows the velocity arrows of the 8- and 2-components of uf before ( t  = lo), 
during ( t  = 20 and 30), and after ( t  = 40) the wave breaking event. The shading 
indicates regions of positive and negative potential vorticity and will be discussed in 
54.4. At t = 10, the spanwise flow is very weak and exhibits no obvious spatial 
structure. By t = 20, however, this flow has been greatly enhanced in a localized region 
corresponding to the overturns in the density field. Within this region, a series of 
counter-rotating vortices is evident. The flow is similar in appearance to the convective 
cells predicted by linear stability theory. Because the noise field is initially broad- 
banded, the observed scale of the convective cells is, apparently, the fastest growing 
scale, though no calculations have been attempted to predict this scale a priovi. By 
t = 30, convective cells have been formed throughout the horizontal extent of the 
computational domain. The cells have moved upward, following the overturns in the 
density field. By t = 40, the cells have moved up further and collapsed, becoming 
almost purely horizontal motions. Remnants of the cellular structure are still present, 
with the counter-rotating vortices replaced by alternating regions of convergence and 
divergence. 

4.4. Generution of potentid aovticity 
Though potential vorticity dynamics have long proven useful in the study of large-scale 
geophysical flows, only more recently (Staquet & Riley 1989a, 6) has potential vorticity 
dynamics been used in the study of stratified flows at smaller scales. This stems in part 
from laboratory evidence that the decay or collapse of stratified turbulence is related 
to the generation of quasi-horizontal pancake motions, i.e. vortical modes, but also 
because of the intimate connection between the generation of potential vorticity and 
the molecular effects of mixing and dissipation. 

In a non-rotating coordinate system, potential vorticity ZI is defined by ZI = w.Vp, 
where p is the total density p(z)  +p’. The conservation of ZI, often referred to as Ertel’s 
theorem, is expressed as 

(see e.g. Lelong 1989). Equation (10) states that, following the fluid motion, potential 
vorticity can be changed only through molecular effects. An analogous equation, with 
higher-order spatial derivatives on the right-hand side, can be derived for flows 
satisfying equations with higher-order dissipation operators. Integrating (10) over a 
volume enclosed by isopycnals reveals that the integrated ZI is identically conserved 
even in a viscous, diffusive flow. This does not imply, however, that no changes in the 
ZI-field occur. Potential vorticity variance can increase (or decrease) substantially. 

For the problem studied here, it should be noted that neither the initial wave packet 
nor the ambient shear flow carry potential vorticity. The vorticity of the noise field in 
the three-dimensional simulations is randomly oriented and so these calculations do 
contain a small amount of potential vorticity initially. The three-dimensional linear 
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case developed no significant three-dimensionality and no significant potential vorticity 
signal. We therefore focus our attention on the potential vorticity dynamics of the 
three-dimensional nonlinear case. 

The potential vorticity Z7 can be calculated directly from the computed flow fields. 
Regions of high potential vorticity magnitude are correlated with the formation of the 
transverse vortices, as shown in figure 6. To get a better feel for this flow component, 
we also estimate the velocity field u,, associated with the potential vorticity. In the later 
stages of the simulation, the characteristic slope of the isopycnals is small. As a result, 
the leading-order term in the expansion of u, for large Richardson numbers is a good 
approximation (Lelong 1989). This leading-order term u,,,, is simply the velocity field 
associated with the vertical vorticity ( w e t ) .  Velocity arrows for u,,, are shown in figure 
7. The horizontal plane of this figure is z = 5.7. which is located in the region of 
convective activity. 

At t = 10 there is only a very weak vertical vorticity signal with no evidence of spatial 
coherence. By t = 20, when the spanwise convective cells are well established (see figure 
6), alternating regions of horizontally circulating flow have begun to develop. By 
t = 30, the isopycnals at this level are nearly flat and the vertical vorticity is a very good 
approximation of the potential vorticity. The flow pattern evident earlier has been 
significantly enhanced and covers nearly the full extent of the streamwise direction by 
r = 40. Note that the transverse spatial scale of the horizontal vortices a t  t = 30 and 
40 is approximately equal to the scale of the convective cells in figure 6. Further, the 
orientation of the circulation patterns is consistent with rotation of the convective cells 
into the horizontal plane by the ambient shear. From figures 6 and 7 we see that by 
t = 40 the flow consists of nearly horizontal rotational motions. These motions are 
localized in depth, confined to the region of wave instability. 

The spatial relationship between potential vorticity 17 = o- V p  and the overturning 
wave can also be seen in figure 8. Potential vorticity is first produced near the tip of the 
overturning feature. While the general trend of the development can be inferred from 
figure 8, three-dimensional animations of this process were much more revealing. 
Potential vorticity tubes appeared to stream out from the crests of the overturns, falling 
downward into the troughs. These tubes of potential vorticity alternate in sign in the 
spanwise direction, and are approximately aligned with the cores of the convective cells 
as shown in figure 6. 

Aside from a kinematic relationship, there appears to be further indication of a close 
connection between the onset of spanwise convection and the production of potential 
vorticity. The energetics of these two flow components evolve nearly in parallel. Figure 
9 shows the kinetic energy content of u, and the filtered velocity field uf as functions 
of time. For  comparison of magnitudes, the vertical kinetic energy, indicative of wave 
activity, is also plotted. 

The kinetic energy of both u, and uf increases sharply at about t = 20, after the 
instability has developed. Both quantities then remain approximately constant. By the 
end of the simulation, the kinetic energy content of the potential vorticity field is nearly 
an order of magnitude greater than the vertical kinetic energy of the internal wave field. 
(Though not apparent in figure 9, most of the wave kinetic energy is associated with 
horizontal motions by this point.) Estimating the final wave energy to be twice the final 
available potential energy (see 9: 5 ) ,  the ratio of vortical mode energy to wave energy is 
approximately i. The buoyant collapse of turbulence into vortical motions may be an 
intrinsic process associated with stratified flows. The collapse of stratified turbulence 
into a flow field with an energetic vortical mode component and a much weaker 
internal wave signature has also been observed in numerical simulations of 
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FIGURE 9. Energy growth of the velocity fields aasociated with potential vorticity and the spanwise 
flow). The horizontal kinetic energy of u, (-). the kinetic energy of u1 (----) and the total vertical 
kinetic energy (----) are shown. 

Kelvin-Helmholtz instabilities (Staquet & Riley 1989a). This collapse has also been 
observed in the laboratory under conditions of strong stratification (Lin & Pao 1979). 

The dynamics of wave instability near critical levels has been shown to be 
fundamentally different in two and three dimensions when the energy of the incident 
wave is large enough to produce overturns in the stratification. Convective instability 
in a mode periodic in the spanwise direction provides the mechanism by which the flow 
becomes three-dimensional. The timescale of wave breakdown depends strongly on the 
mechanism of instability, being far longer in the two-dimensional calculation, in which 
spanwise convection cannot develop. The numerical results in three dimensions are 
consistent with the predictions of linear stability theory (Winters & Riley 1992; Lin 
et al. 1993). 

4.5. Niirnrricul resolution o j '  instabilit.i, 
Figure 10(a) shows the displacement power spectra E1: at I = 20 and 22 as functions of 
vertical mode number 10m/2x, where nz is the vertical wavenumber. The spectra have 
been averaged over horizontal wavenumbers and scaled by the maximal value. The 
unstable internal wave packet contains most of the energy and is centred at 
approximately mode 10. Between times 20 and 22, the energy of the modes of 
instability, i.e. the convective cells shown in figure 6, rapidly increases. The spatial 
scales associated with the growing instability are highlighted. A characteristic vertical 
mode number of the instability is 28, as shown in the figure. For a spectral model with 
n, = 200 vertical grid points, 101 vertical modes can be represented numerically. The 
vertical scales of the instability are well within the resolution of the numerical model. 

Figure 10(h) shows the horizontal kinetic energy spectra, Ehke, computed using the 
flow field shown in figure 7 a t  t = 20. The spectra are plotted in area-preserving form, 
normalized by the power a t  streamwise mode zero. The solid curve is the spectrum as 
a function of spanwise mode number 101/2n, averaged over xc[O, 10). This spectrum 
is clearly peaked, with a dominant spanwise mode number of 5.  The broken curve is 
the streamwise mode number spectrum averaged over Y E  [O, 10). Most of the energy is 
in the lowest few modes. 

Given the spatial scales a t  which the instability occurs, it is important to examine the 
effect of the subgrid-scale dissipation model at these scales. A dimensionless viscous 
timescale r,, can be defined as a function of the wavenumbers k ,  1 and m. For a direct 
numerical simulation t,, = Re/(k' +I' + m'). For the subgrid-scale model defined in $2, 
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FIGURE 10. (a) Displacement power spectra Er at t = 20 (----) and 22 (---). The transverse mode of 
convective instability grows rapidly between times 20 and 22 and has a characteristic vertical mode 
number of 28. (h) Horizontal kinetic energy spectra, E,,,, computed using the flow field shown in 
figures 6 and 7 is 5.  

t,, = Re'/(Cr2k2 +p"12 +m2)". Defining the dimensionless buoyancy timescale t,,, = Ri-b, 
the ratio rbl./t,, can be examined as a function of wavenumber. Figure 11 shows this 
ratio, computed for both normal viscosity and the hyperviscosity described in $2, as a 
function of streamwise mode number 10k/2n. The viscous timescales were computed 
using the observed characteristic scales of the instability, i.e. for a spanwise mode 
number of 5 and a vertical mode number of 28. The displacement power spectrum, 
calculated using the data from figure 8 at  t = 2 1, is also shown in area-preserving form. 
Nearly all the energy associated with the wave instability occurs at scales for which 
t,, % tb(,.  Note that for a low-Rr direct simulation, viscous damping would occur on the 
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FIGURE 11. Ratio of buoyancy to viscous timescales as a function of streamwise mode number for 
spanwise and vertical mode numbers of 5 and 28 respectively. The ratio is plotted for the 
hyperviscosity used in these simulations (----) and for physical viscosity with Re = 100 (----). The 
displacement power spectrum, corresponding to figure 8 at t = 21, is also shown (-). 
Nearly all the energy of the wave instability resides in spatial modes where t ,  $ tbv. 

buoyancy timescale at the observed spatial scales of the wave instability. A much 
higher-resolution numerical model would be required to allow sufficiently large 
Reynolds numbers to simulate the instability directly without excessive damping. This 
is precisely why large-eddy rather than direct simulations were conducted. 

5. Energetics of waves at critical levels 
We now examine the energetics of the interaction of internal waves with a mean 

shear flow. An energy equation, describing the balance within a fixed volume V, is used 
to quantify the energy flow associated with internal waves approaching a critical level. 
The volume of interest encloses the critical level as well as that region of the domain 
in which the waves are observed to become unstable. The volume V is bounded above 
and below by horizontal planes S, and S, located at z = 7 and z = 5 respectively. 
Initially, the energy in V is approximately zero. Energy is input to V in the form of 
downward-propagating waves. Through interaction with the ambient shear, a number 
of processes occur, including mean flow acceleration, wave reflection, diffusive mixing 
and dissipation. Our objective is to quantify the distribution of the incident energy 
between these processes. 

The kinetic and potential energies, Ek and ED respectively, are defined as integrals 
over V, 

EI, =iJv(u2+02+d)dV,  (1 1) 

Ep = Ri i, p(z-zTef)dV, 

where zref is an arbitrary reference height. The total energy Etot is then the sum of the 
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kinetic and potential energies. Evolution equations for Ek and E, can be derived from 
the equations of motion (1)-(3): 

w[p+~(u2+u2+w2)]dS-Ri pwdV+ u-g(u)dV, (13) 
dt 1" JV 

pw(z-z,,)dS+Ri (z-zre,)9(p)dV. (14) dt 

Adding these two equations yields the balance equation for the total energy in V :  

d dt Etot = - fs w[p +i(u2 + 21' + w')] dS- Ri 

+ [U '~(u)+(Z-- , , f )~(p) ldV.  (15) sv 
5.1. Sources and sinks 

Since periodic boundary conditions are imposed in the R- and 9-directions, the surface 
integrals need only be evaluated on S, and S,. The first term on the right-hand side of 
(15) is the rate of kinetic energy flux, while the second term is the rate of potential 
energy flux. For ideal waves, i.e. unbounded linear internal waves, the first term is non- 
zero while the second term vanishes because p' and w are out of phase. Contributions 
resulting from this second term, then, are second-order wave effects. Owing to the 
trapping effect of the critical level, the isopycnal displacements are very small near S, 
compared to those near S,. If we now prescribe the reference level zref to correspond 
with S,,. the flux rate for potential energy vanishes on S,. Thus, (15) states that the total 
energy in V can change as a result of kinetic energy flux across the upper and lower 
surfaces, through molecular dissipation, or, to a much smaller extent, through net mass 
flux across S,. We will use this balance equation to quantify the energy flow in the 
system. 

The sources and sinks of energy can be evaluated directly from (15), simply 
integrating the flow field in space to get the rates, and integrating in time to get the 
cumulative gains and losses. Note however that, if we integrate the flux rate through 
S,, we are measuring the net energy flux Enet, resulting from both incident and reflected 
waves. To separate the two, we also carried out free wave calculations in which no 
ambient shear flow is prescribed. In the absence of any interaction, these waves simply 
flux energy into V through S, and out again through S,. We define the incident energy 
E,, to be the energy fluxed in through S,  in the free wave calculations. The wave energy 
reflected Ere,, is then the difference between En,, and Ei,. 

5.1.1. Sources 
The cumulative energy fluxes through the bounding planes S, and S, are shown in 

figure 12 for the linear, as well as the two- and three-dimensional nonlinear 
calculations. Early in the calculations, before about t = 10, only the leading edges of 
the wave packets have propagated across S, and so E,, increased only slowly. Most 
of the increase in E,, occurs between t = 10 and 35, as the most energetic portion of 
the packets arrives. The slight variability of E,, in (b) and (c) after about t = 30 
indicates an enhancement of dispersion, or the tendency for wave components to 
separate, through nonlinear effects. 

The energy reflected is indicated by the shaded regions. Reflection becomes significant 
after about t = 25 and t = 30 in the nonlinear calculation and linear calculations 
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FIGURE 12. Incident energy Ei,, net energy fluxes En,,, and E,,,,, through upper and lower bounding 
surfaces. Results are shown for the (a) three-dimensional linear, (b) two-dimensional nonlinear and 
(c) three-dimensional nonlinear calculations. 

respectively. Relative to Etn, nonlinearity enhances reflection approximately twofold. 
After about t = 30, the net energy flux through S, begins to decrease slightly in the 
linear case, indicating more upward- than downward-propagating energy late in the 
calculation. During the corresponding time period in the nonlinear cases, the net rate 
of energy flux is approximately zero, as a balance is maintained between incidence and 
reflection. 

The transmitted energy Etrans is found by integrating the transmission rates over the 
lower bounding surface S,: 

Etrans = [ $s2  w[p+$.(u2+u2+ w2)]dSdr+ Ri pw(z-z,,JdSdr. (16) 
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In all cases the transmitted energy Etruns is less than zero. By the sign convention of 
(16), negative values indicate a net flux of energy into I/ through S,. In the three- 
dimensional nonlinear case, this flux occurs primarily between about t = 22 and 25, 
during the period that overturns are present near the critical level. The flux is 
maintained for a much longer period of time, again correlated with the overturning 
features, in the two-dimensional calculation. 

5.1.2. Sinks 

also evaluated by direct integration: 
The energy losses due to viscous and diffusive effects, D, and D, respectively, are 

Figure 13 shows the cumulative losses D, and D,. 
For all three calculations IDPI 4 ID,l, although substantially less so in the linear case. 

In each of these cases, the dissipation rates of both kinetic and potential energy are low 
until about t = 20, when the isopycnal displacements are largest. In the three- 
dimensional nonlinear calculation, approximately 95 YO of the kinetic energy 
dissipation occurs after t = 20, when the convective cells are clearly visible in figure 6. 
The dissipation rates of kinetic energy remain nearly constant after about t = 22, 
implying a nearly uniform rate of energy flux to small scales. It is noteworthy that the 
total amount of kinetic energy dissipated in the three-dimensional case is nearly twice 
that in two dimensions. In the two-dimensional case, the energy transfer to small scales 
is essentially laminar, caused by the continued refraction of the steep waves near the 
critical level by the ambient shear. The cascade of energy in the three-dimensional case 
is controlled by the dynamics of wave instability rather than wave/mean flow 
interaction. Apparently, the transition of the flow from two to three dimensions 
through convective instability enhances the cascade of energy to small scales. 

It is also interesting to compare the energy losses between the linear and nonlinear 
calculations. If the dynamics were strictly linear, the amount of kinetic energy loss in 
the large-amplitude simulations would simply be nine times the energy loss of the 
small-amplitude case. In fact, the loss of kinetic energy in the two-dimensional case is 
only about 76% of this value while in the three-dimensional case it is 121 %. Despite 
the twofold increase in reflection, the total amount of kinetic energy driven to the 
dissipation scales increases substantially in the three-dimensional case. These results 
imply that the dynamics of fluid instabilities at moderate scales may largely determine 
the energetics of the resulting small-scale turbulence. 

5.2. Energy partition 
The total energy within V can also be partitioned into various categories. Loosely 
speaking, we split both the kinetic and potential energies into mean and perturbation 
components. The utility of any such splitting depends on the degree to which the 
averaging operations isolate different physical processes. For kinetic energy, it seems 
natural to define mean velocities with respect to horizontal averaging over an integer 
number of wavelengths, since we are interested in quantifying the acceleration of the 
horizontally averaged mean flow. Horizontal averaging is not a good choice for the 
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density field, however, if the interest is in quantifying the diffusive mixing of the fluid. 
For the problem considered here, the potential energy of the horizontally averaged 
density is influenced substantially more by adiabatic buoyancy flux than by diffusive 
mixing (Winters & D’Asaro 1991, 1994). To quantify mixing, it is better to split the 
potential energy between available and background components. The available 
potential energy is the amount of energy released if the fluid were to adiabatically 
attain a configuration of minimum potential energy. The background potential energy 
is simply that of the minimum energy configuration. Aside from changes in potential 
energy due to net mass flux into V,  which can be calculated and corrected for, the 
background potential energy can only change as result of diffusive mixing. Conversely, 
changes in the background potential energy, corrected for net mass flux, represent 
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energy expended in mixing the fluid. The available potential energy is energy still 
available to be converted to other forms, i.e. to kinetic or background potential energy. 
Regarding the transfer of energy to the mean states as sinks, we can think of the sum 
of the available potential and perturbation kinetic energies as the energy of the flow 
that is, in some sense, still active. A more complete discussion of the potential energy 
budget is given in Winters & D’Asaro (1991, 1994). 

Thus, the kinetic energy is split between mean and fluctuating components with 
respect to horizontal averaging. The potential energy is decomposed into available and 
background components, and corrected to eliminate the contribution due to net mass 
flux into V. Because the flow contains relatively large amounts of mean kinetic and 
background potential energy initially, only changes in these mean states are of interest. 
We define 

( E J M ( t )  = A -  d d z ,  (19) 

(20) 

: s: 
E,,,(t) = ARi jv pz,dV+ p4s2PM.(Z-zref)dSd7 

to be the relevant changes in mean kinetic and background potential energy. Here A 
indicates a change with respect to the initial value and an overbar signifies spatial 
averaging. The vertical location of a fluid parcel in the minimum-energy configuration 
is denoted by z*. Numerically, the correction associated with mass flux through S ,  
turns out to be relatively small. The perturbation kinetic energy and available potential 
energy are 

Figure 14 shows the distribution of energy within V as a function of time. Early in 
the calculations, before about t = 10, only E, and (Ek)p are increasing as the wave 
packets enter Vbut have not yet reached the vicinity of the critical level. The two curves 
are almost coincident during this time, indicating approximate equipartition of wave 
energy. Later, an exchange of energy is apparent as Eu and oscillate in time. This 
exchange is a second-order wave effect which occurs even in the small-amplitude 
calculation. The oscillations cease at about t = 30. While there is a slight bias toward 
excess potential energy in the two-dimensional case, and excess kinetic energy in the 
linear case, both calculations exhibit approximate equipartition by t = 50. In the three- 
dimensional nonlinear case, however, a significant bias towards excess kinetic energy 
emerges shortly after t = 20, which corresponds to the time period when the vortical 
mode becomes energized. The excess perturbation kinetic energy is approximately 
equal in magnitude to the horizontal kinetic energy of the vortical mode at the end of 
the calculation. We interpret this as the result of energy transfer to the potential 
vorticity carrying quasi-horizontal motions. 

Beginning about t = 10, ( E J M  starts to increase as the waves near the critical level 
accelerate the mean flow. Mean flow acceleration continues at a nearly uniform rate 
until about t = 40, for both the two-dimensional and the linear calculations, but drops 
off considerably at about t = 30 in the three-dimensional case. Again, we can compare 
the total amount of mean flow acceleration for the large-amplitude cases to that 
obtained by scaling up the small-amplitude case. In contrast to D,, however, nonlinear 
values of ( E J M  are much less than the scaled linear value; only about 69 % and 60 YO 
for the two- and three-dimensional cases respectively. Apparently, the increased 
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25.0 

12.5 

0 10 20 30 40 50 0 10 20 30 40 50 
Time in buoyancy periods Time in buoyancy periods 

0 10 20 30 40 50 
Time in buoyancy periods 

FIGURE 14. Energy partition within V. Kinetic energy is split between horizontal mean and 
perturbation components (QM and (EJP.  Potential energy is decomposed into available and 
background (corrected for net mass flux) potential energies E, and Emi,. (a) Three-dimensional linear, 
(b)  two-dimensional nonlinear, (c) three-dimensional nonlinear calculations. 

reflection and kinetic energy dissipation occur primarily at the expense of mean flow 
acceleration. 

The energy expended in mixing the stratification, Emiz,. only begins to increase 
significantly after about t = 18. This corresponds to the time period of maximum 
isopycnal displacements. A relatively uniform rate of increase in Emis is maintained 
throughout the calculations. In all cases, significantly less energy is transferred to 
background potential than to mean kinetic energy. Relatively more mixing occurs in 
both the large-amplitude calculations than in the small-amplitude case. The final values 
of Emis are 135% and 109% of the scaled linear result. 

The largest energy transfer in the wave critical-level interaction is to the ambient 
shear flow. An important issue is whether mean flow acceleration, coupled with 
weakening of the stratification through mixing, tends to stabilize or destabilize the 
ambient flow. Figure 15 shows the evolution of the mean flow profiles and the 
minimum values of the gradient Richardson number. Though the mean flow 
accelerates, the mean shear decreases. This effect is partially offset by diffusive mixing 
and the net result is an overall increase in the gradient Richardson number and hence 
the stability of the flow. This result is likely to be sensitive to the ratio of characteristic 
lengthscales of the mean shear flow and the incident wave. 
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2D nonlinear 
‘in 8 1.25 (94.4 Yo) 
Etrans -4.75 (5.6%) 

ELOS8 8.75 (10.2%) 
( E d M  30.50 (35.6 Yo) 

Ere,, 34.00 (39.5 %) 

(Ek)i= 3.50 (4.0 %) 
Ea 3.75 (4.3 %) 
Enliz 7.00 (8.2 Yo) 

Accounted for 87.50 (101.9°/o) 
Total in V 86.00 (100%) 

3D nonlinear 
81.25 (97.9%) 
- 1.75 (2.1 %) 
30.25 (36.5 %) 
14.00 (16.9%) 
27.00 (32.5 %) 
4.75 (5.7 %) 
3.25 (3.8 %) 
5.75 (6.9 %) 

82.75 (100%) 
84.75 (102.4 O h )  

Scaled linear 3D linear 
84.25 (97.8 Yo) 9.36 

-2.00 (2.2 %) -0.22 
16.25 (18.9%) 1.81 

44.50 (51.7%) 4.94 
11.50 (13.5 O h )  1.28 

5.25 (6.1 %) 0.58 
5.75 (6.6 Yo) 0.64 
5.25 (6.1 Yo) 0.58 

86.00 (100%) 9.56 
88.50 (102.8%) 9.83 

TABLE 1. Dimensionless energy partition 

The energy balance presented in this section allows the effects of nonlinearity and 
three-dimensionality to be examined independently and quantitatively. A summary of 
the energy partition between flow components at the end of the calculations is given 
in table 1. Three calculations are summarized in table 1. The top headings indicate the 
initial conditions for each simulation. Again, the terms linear and nonlinear indicate 
only the initial amplitude of the incident wave packet; the equations solved were fully 
nonlinear in all cases. As indicated in $3, the calculations labelled 3D were initialized 
with a small-amplitude three-dimensional noise field as well as the two-dimensional 
wave packet and ambient shear flow. The flow in these cases is then free to evolve in 
three dimensions. The designation 2D indicates that no noise field was initialized and 
hence the evolution remains strictly two-dimensional. To facilitate comparison with 
the nonlinear results, the results of the linear case have also been scaled up to the 
energy level of the nonlinear calculations. The labels to the left indicate specific 
categories of energy, each having been defined previously. 

The dimensionless energy values are given for each category. These values are then 
converted to percentage of the total energy input to V. Note that most of the energy 
input was fluxed in through the upper boundary S,  and thus appears in Ei,. These 
values are not 100 YO however, because a small amount of energy flux into V occurred 
across the lower surface S,. This energy appears as negative values of Etrans. The 
bottom two rows give an indication of the total error in the calculations. The ‘Total 
in V’ figures are simply the sums of the energy fluxes into the region of interest. The 
‘Accounted for’ values are then the sums of the estimates of each category. Ideally, 
these two should agree. Our results agree only to within about 3 %. 

For the linear critical-level interaction, approximately 50% of the wave energy is 
expended in accelerating the mean flow, nearly 20 YO is reflected, and about 13 O/O is still 
in the form of internal waves at the end of the calculation. The remaining wave energy 
is driven to small scales with about 6 %  mixing the ambient stratification and about 
14 YO appearing in EL,,,, i.e. viscously or diffusively dissipated. 

The energy distribution is sensitive to the incident wave amplitude, as can be seen by 
comparing the scaled linear results with either of the nonlinear cases. The relative 
amount of mean flow acceleration decreases substantially, with only about 36 % and 
33 % of the wave energy converted to (EJM in the two- and three-dimensional cases 
respectively. The relative amount of reflection, however, is enhanced by a factor of 
about two. 

Three-dimensional effects are also evident. Three-dimensionality enhances the 
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cascade of energy to small scales, increasing the dissipation of energy by a factor of 
about 1.7 in comparison to the two-dimensional case. It is interesting to note that, 
despite the substantial increase in total dissipation, the total mixing of the ambient 
stratification actually decreases slightly. Further, the excess ( E J p  in comparison to E, 
is related to the excitation of vortical modes. 

6. Discussion 
A series of calculations was performed in an effort to study the dynamics and 

energetics of internal wave breakdown at critical levels. Both large- and small- 
amplitude wave packets were allowed to propagate into a shear flow toward a critical 
level. Large-amplitude internal waves were observed to break down at critical levels 
through an instability process. The effects of both shear and buoyancy contribute to 
the instability mechanism and the interaction between these two effects results in the 
intrinsically three-dimensional nature of the instability. Ultimately the instability is 
convective : overturned isopycnals lead to counter-rotating vortices similar to 
convective cells. The orientation and energetics of these vortices, however, are strongly 
influenced by the intensified wave shear. The wave packets simulated here break down 
neither by a simple advective instability nor by a simple shear instability but by a three- 
dimensional instability with elements of both. One conclusion to be drawn from this 
result is that when both convection and shear are important, three-dimensional 
dynamics may be important. Constraining a model to only two dimensions may have 
unexpected consequences. 

The simulation of wave instability provides a detailed view of a single event which 
results in the formation of nearly horizontal motions containing vertical vorticity. This 
aspect is of particular interest as neither the ambient shear flow nor the incident wave 
packet carry any potential vorticity. It should be noted that this form of instability 
occurred only in the presence of a three-dimensional noise field. In the absence of noise, 
the flow remains two-dimensional and no potential vorticity is generated. 

The energetics of the interaction were also investigated. A detailed energy budget 
was used to quantify the distribution of energy between various flow components. The 
two most important processes energetically were wave reflection and mean flow 
acceleration, For the large-amplitude incident waves, and a gradient Richardson 
number of at the criticallevel, 3540% of the wave energy was reflected. These 
percentages are close to the 35% reflectivity reported by Breeding (1971) for an 
ambient Richardson number of 0.53, though one should be wary of a direct 
comparison as the reflectivity depends on wave amplitude as well as other factors. 
About 35 Yo of the incident wave energy was expended in accelerating the mean flow 
for the large-amplitude cases. Mean flow acceleration is apparently sensitive to wave 
amplitude as the percentage increased to slightly over 50 YO for the small-amplitude 
case. In either case, the observed mean flow acceleration is much less than the 82% 
observed by Thorpe (1987). 

Because of the large fractions of energy reflected and absorbed, only a relatively 
small amount is available to mix the ambient stratification. In fact, only about 20-25 % 
of the incident energy ends up driven to small scales where is it subjected to diffusive 
and viscous effects. Only a fraction of this energy goes to mixing. A more detailed 
analysis of the small-scale mixing and dissipation and associated with this event is 
discussed in Winters & D’Asaro (199 1, 1994). 
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